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Abstract

Vision-based geolocation is used to deduce the location
an image was taken at, with applications in social media
(auto-tagging), forensics, and disaster response. Using the
game GeoGuessr as a motivator, our work aims to under-
stand the key image features that can be used to deduce
their locations. Using Mapillary’s Street-level Sequences
(MSLS) corpus [3], comprising 1.6 million crowdsourced
dash-cam images across 30 cities, our work demonstrates
that a straightforward single-image, single-stage regression
model achieves competitive localization accuracy, with sub-
500 km average error, without extensive computational re-
sources. Training on 7% of MSLS (113,000 frames), our
model achieves a meean error of 489 km and median error
of 102km, successfully localizing 49.6% of images within a
100km radius, beating a naive k-nearest neighbors base-
line by 7x. We utilize visualizations with Grad-CAM to
reveal that the model implicitly identifies key visual cues,
such as lane-marking colors, architectural features, vege-
tation shapes, and sky coloration — all of which are com-
monly employed by top GeoGuessr players. Our findings
suggest that effective geolocation can be achieved without
sequence-based context or retrieval-based methods when
leveraging robust pretrained vision models, with sufficient
generalizability.

1. Introduction
GeoGuessr is an online geography game where you are

shown a street view image from a random location in the
world, and you have to pinpoint where that is on the map.
The closer your pin is to the true location, the higher you
score. The top human players are consistently able to guess
within the correct city (≈ 25km) or locale (≈ 100km) with
remarkable speed, combining visual cues such as the color
of the dirt, the colors and shapes of road markings, the rel-
ative position of the sun in the sky, the number of elec-
tric poles lining roads, and so on. As part of this project,
we’ve been investigating the possibility of training neural

networks to play GeoGuessr, providing a single street view
image as input to the network, which then outputs its best
guess at the coordinates for the image.

Formally, the problem is: given a single RGB street-level
image, predict the location at which the image was taken,
in the form of (lat, long) coordinates or an equivalent 3D
unit vector. This task is made difficult by two key factors:
images may be taken on streets where there are no well-
known landmarks in sight, and the same scenery may be
different depending on the time of day as well as the season
and weather conditions.

We employ the Mapillary Street-level Sequences
(MSLS) Dataset to train a network for this, subsampling ap-
proximately 113,000 images (5̃,000 per city) to enable com-
prehensive cross-city generalization. Using the raw RGB
images, we leverage a pretrained CLIP ViT-B/16 model as
a fixed feature extractor to generate compact visual em-
beddings, coupledd with a two-layer multilayer perceptron
trained using the von Mises–Fisher loss (vMF loss) func-
tion, to output a 3-D unit vector p̂ = [x, y, z]⊤ ∈ S2 that
points from the center of the Earth to the predicted location
on the surface.

2. Related Work
Before embarking on this project, we also spent consid-

erable time understanding the work that has preceded this
investigation, for image-based geolocation problems. Some
key papers, and the findings from them that proved most
helpful, are summarized below:

• PlaNet [9] first cast global geolocation as a classifica-
tion task over S2 cells; their coarse-cell loss motivates
our choice of city cell splitting and provides a refer-
ence for accuracy at various levels: continent-level,
country-level, city-level, and street-level.

• Im2GPS [5] introduced KNN retrieval for outdoor
photos. It uses a database of 6.5M Flickr images, and
finds nearest neighbors based on six global image de-
scriptors. This approach forms the conceptual basis of
our non-parametric baseline.
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Later work on Im2GPS such as Vo et al. [8], showed
that features learned for cell classification can also be
used as embeddings for retrieval. This offered high
fine-scale accuracy while requiring far fewer reference
images than PlaNet. Retrieval can localize quite a bit,
even getting the exact street correct if a very close
scene exists in the gallery. However, there continue to
be practical hurdles, given the search cost and amount
of coverage / gallery size needed at query time.

• PIGEON [4] proposes a two-stage, planet-scale sys-
tem that first pretrains a ViT backbone with a multi-
task contrastive objective and semantic geo-cell labels,
followed by refining coarse predictions with a retrieval
module. The authors were able to achieve SOTA re-
sults on GeoGuessr-style-tasks.

• Pure Coordinate Regression is another approach that
seems attractive for its apparent simplicity. However,
it is notoriously unstable at global scale in practical
settings. We came across several past works that es-
tablished this, including, for example, De Brébisson
et al. [2] who reported poor convergence on it when
training neural networks to predict taxi destinations.
Similarly, the recent OpenStreetView-5M benchmark
[1] confirmed that a CLIP-ViT + MLP regressor trails
classification-augmented baselines.

Similar to PlaNet, the winning strategy now seems to
be coarse-to-fine: predict a rough region first, then
regress or retrieve within it, so that we can use some
amount of visual and geographical reasoning to narrow
down the search scope, followed by a memory compo-
nent to get more precise.

3. Methods
We cast world-scale geolocation as metric regression on

the unit sphere. For clarity, we first formalise the task
(Sec. 3.1), then describe our network architecture (Sec. 3.2),
the von Mises–Fisher training objective (Sec. 3.3), the opti-
misation schedule (Sec. 3.4), and finally the evaluation pro-
tocol and baselines (Sec. 3.5). A basic schematic pipeline
is shown in Fig. 1.

3.1. Problem formulation

Let I ∈ RH×W×3 be a street-level RGB im-
age captured somewhere on Earth. Its ground–truth
position is represented by a 3-D unit vector p =[
cosϕ cosλ, cosϕ sinλ, sinϕ

]⊤ ∈ S2, where ϕ and λ
denote latitude and longitude, respectively. Our goal is to
learn a function fθ : RH×W×3 → S2, parameterised by θ,
that predicts p̂ = fθ(I) so as to minimise the great-circle
distance

dgc
(
p, p̂

)
:= R⊕ arccos

(
p⊤p̂

)
, (1)

with R⊕=6371 km the Earth’s mean radius.

Figure 1: Model Pipeline

3.2. Architecture overview

Our network has two key components (Fig. 1):

(1) Frozen CLIP backbone. We adopt CLIP ViT-B/16
[7], a 12-layer Vision Transformer with 768-D hidden size
and 16-pixel patches. Given a 224 × 224 crop I ′, the
model outputs a sequence of 1 + 142 tokens. We keep
the ImageNet-scale parameters frozen and retain only the
[CLS] token z ∈ R768 as a global visual descriptor. Freez-
ing yields two key advantages: (i) smaller memory footprint
(no activations stored for backward), (ii) training stability
on a 100-k-image dataset, without having to retrain lower-
level features such as edge-detection etc.

(2) vMF regression head. A two-layer MLP projects the
feature to R3:

h = W2 σ
(
W1 z

)
, W1∈R256×768, W2∈R3×256.

We obtain the predicted unit vector by p̂ = h/∥h∥2. The
head has only 260 k parameters and can train relatively
quickly, taking less than one hour on an A100 GPU.

3.3. von Mises Fisher loss

To model directional uncertainty we treat predictions as
the mean direction of a 3-D von Mises–Fisher (vMF) distri-
bution [6]:

p
(
p | p̂, κ

)
= C3(κ) exp

(
κ p̂⊤p

)
, C3(κ) =

κ

2π
(
eκ − e−κ

) .
Here κ is the concentration parameter (κ = 0 is uniform).
We optimize the negative log likelihood

LvMF = −κ p̂⊤p+ logC3(κ). (2)

Directly learning κ is unstable for κ > 50, due to numeri-
cal instability as the normalizer requires evaluating ekappa,
which overflows 32-bit and 64-bit floating point at κ ≈ 88,
so we instead learn κ̃ and set κ = softplus(κ̃) + 10−3.
For κ > 50 we use the large-κ approximation logC3(κ) ≈
log κ− κ− log(2π), avoiding numerical overflow.
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Phase Epochs Frozen LR Batch
Embed – all – 128
Probe 40 CLIP 2.5×10−3 2 048
Fine-tune 2 last 6 unf. 5×10−5 64

Table 1: Training schedule on a single Colab A100.

3.4. Training strategy

Embedding pass. To manage OOM crashes, we streamed
all training images once through the frozen backbone, while
storing CLS tokens are stored as a mem-mapped array.

Linear probe. We train the head + κ̃ for 40 epochs using
AdamW (β1 = 0.9, β2 = 0.95) and a cosine decay from
10−2 to 10−4 (Tab. 1).

Light fine-tuning. Unfreezing the last six transformer
blocks adds 11 M parameters. We train for two epochs at
LR = 5× 10−5 with mixed precision, gradient checkpoint-
ing, and early-stopping on convergence.

Data augmentation. Given the need to have our model
generalize to a variety of real-world variations in condi-
tions, such as weather, time of day, and seasons, we aug-
mented the input images in ways that would perturb rele-
vant aspects, but not result in a misrepresentation of useful
information: we enabled random cropping (0.8 - 1.0), color
jitter, and gaussian blur, but we disabled horizontal flips so
that cues such as left/right traffic signage and the position
of the sun would be maintained as is.

3.5. Evaluation protocol and baselines

Splits. We use 23 cities, with their datasets split between
train (90%), validation (5%), and test (5%), by Sequence
ID. Within a city we split by sequence key so no contiguous
frames leak across splits.

Metrics. Primary: mean and median great-circle error
(km). Auxiliary: Inspired by GeoGuessr scoring tiers, we
measure hit-rates within 25km and 100km.

Baseline. Random guess: As a naive baseline, we
sample a location uniformly on Earth’s surface, i.e. lat
ϕ̃ ∼ U [−π

2 ,
π
2 ] and long λ̃ ∼ U [−π, π]. The expected

great-circle error for such a guess is E[dgc] = R⊕ π/2 ≈
10 008 km, as this is approx. a quarter of Earth’s circum-
ference. The median error we’d expect for this would be
d50 = R⊕ arccos(1/2) ≈ 6 672 km.

For our aux. metrics, the probability of falling within a
distance d of the ground truth is P (d) = 1 − cos(d/R⊕);
thus within 25km we have P (25) = 7.7× 10−6 (0.0008%)
and within 100km, P (100) = 1.2× 10−4 (0.012%).

This provides an early lower bound for our network, as a
sanity check.

4. Dataset and Features
A key component of past studies in the subject, such as

PlaNet [9] and PIEGON [4], has been the use of licensed
Google Street View data, which is prohibitively expensive
to acquire at the scale required for Deep Learning applica-
tions independently in an academic setting.

To overcome these limitations, we have instead relied
on the Mapillary Street-level Sequences (MSLS) dataset.
MSLS contains 1.6 million Creative Commons-licensed
dash-cam images, featuring 30 major cities across six con-
tinents. The images have a high degree of variability due to
natural factors, such as seasons and day-to-day weather con-
ditions, which make it valuable for model training, while
being free to access.

We subsampled MSLS to help train our model effi-
ciently, sampling 113,000 images from 23 cities with suf-
ficient data, with 5000 images per city.

MSLS data is in the form of sequences of images, with
(lat, long) values for each image, and a sequence ID. Given
the data is from dashcams, images from the same sequence
are often temporally close. Thus, we decided to split the
training, validation, and test datasets by sequence IDs, so
that each sequence would only be used in one of the splits.

Figure 2: Amsterdam

key value
idx 6825
key -Mi4ZXIOjWS...
lon 4.83851
lat 52.35784
ca 97.94671
captured at 2018-11-03
pano False
sequence key 11667
frame number sgxkml...

Table 2: Metadata for Amsterdam Image (Figure 2).

5. Experiments, Results & Discussion
In this section, we describe the experimental setup

(datasets, training approach, and hyperparameter search),
and define the evaluation metrics used for our project. After
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this, we present our results, discussing and analyzing them
with quantitative and qualitative techniques.

5.1. Experimental Setup

Dataset split. We use the Mapillary Street-Level Se-
quences (MSLS) geo–localisation benchmark, restricted to
the 23 cities with the most coverage. Images belonging to
the same drive sequence never appear in both train and val-
idation sets; this results in 107 188 training images, 6 116
validation images, and 6 116 holdout (test) images.

Backbone and head. We perform feature extraction
with a frozen ViT-B/16 CLIP encoder, pre-trained on
LAION-2B. A 2-layer MLP (input (768) -¿ 256 -¿ 3)
projects the 768-d [CLS] token into a 3-vector, which is
then ℓ2-normalised to S2. We also use regression on a scalar
concentration κ > 0 and train with the von Mises–Fisher
(vMF) negative log–likelihood (??).

Optimiser and schedule. We ran the training in two
phases: (i) a linear probe in which the ViT is kept frozen
for 40 epochs; (ii) a light fine-tune lasting 2 further epochs
in which we unfreeze the top 6 transformer blocks. In both
phases we use AdamW with learning rate η0 = 3×10−4,
weight decay 10−2, and batch size 64. A cosine decay
schedule with 5-epoch linear warm-up gave the most sta-
ble convergence in a small grid search.

Data augmentation. To allow greater generaliza-
tion, we apply some standard data augmentation:
RandAugment(N=2,M=9), +ColorJitter and a 20%
chance of Gaussian blur (kernel size 23 px). As mentioned
earlier, horizontal flips are not used because they would invert the
geo–directional cues.

Hyper-parameter selection. We ran a coarse log-grid over
η0∈{1, 3, 5}×10−4 and weight decay ∈{10−4, 10−3, 10−2} on
a 5-fold random subset ( 20% of the training set each). The chosen
values (η0=3×10−4, wd=10−2) minimized the validation error
by 4/5 times and are reported above.

5.2. Evaluation Metrics

Given a predicted unit vector v̂ and a ground-truth city centre
v, geodesic error is computed as the great-circle distance on the
Earth’s radius R=6371 km:

E(v̂,v) = R · arccos(⟨v̂,v⟩). (3)

We report (a) mean error (ME), (b) median error (MedE),
(c) hit-rates HRd — the fraction of images localised within d km,
with d ∈ {25, 100}.

Model ME↓ MedE↓ HR25 ↑ HR100 ↑

Linear probe (epoch 40) 672 km 175 km 23.1% 42.0%
+ fine-tune (ours) 489 km 103 km 33.2% 49.6%

Table 3: Validation performance on the MSLS 23-city split.
Arrows indicate whether lower (↓) or higher (↑) is better.

5.3. Quantitative Results
Table 3 summarizes the best single-model validation perfor-

mance.
Training dynamics are illustrated in Figure 3, which shows the

negative log-likelihood (NLL), mean and median error, and con-
centration κ over 40 epochs. Note that all curves flatten after ap-
prox. 30 epochs with no subsequent divergence between training
and validation, suggesting little overfitting under the current ca-
pacity.

Figure 3: Training curves for NLL, mean/median geodesic
error, and estimated concentration κ. Bold markers denote
the checkpoint with the lowest validation ME.

Ablation: probe vs. fine-tune. Fine-tuning just 30% of the
ViT parameters yields a 27% relative improvement in ME (Ta-
ble 3). We experimented with unfreezing deeper layers but ob-
served diminishing returns coupled with overfitting, hence we re-
tain the light fine-tune as a sweet-spot.

5.4. Qualitative Analysis
Figure 4 visualises Grad-CAM activations for three random

frames per city. We visualize the norm1 layer for the final block
of the model backbone. The aim here is to try and determine what
the model is really looking at to identify different cities, given one
of our goals was to get an insight into strategies used by top Ge-
oGuessr players.
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Figure 4: Grad-CAM heat-maps illustrating the image regions that most influence the predicted geolocation. Best viewed
digitally.

The network consistently attends to horizon lines, lane mark-
ings, license plates (when cars are close enough), and distinctive
skyline silhouettes (e.g. the Boston financial district) across cities.

Interestingly, the model seems to pay attention to vegetation in
tropical cities including Bangkok in Manila. Electric pylons and
streetlamps are also common focuses for the model, as seen in
Amsterdam and Berlin. In London and Tokyo, we see the classic
buses associated with these cities are highlighted, as they provide
a clear hint to the model, while other cars and bikers are not, as

these are common features in other cities as well.
These are intuitive strategies for GeoGuessr, offering insight

as well as reassurance that our model is indeed learning the right
thing.

On the other hand, we also noticed some areas for improve-
ment: in several images, in Moscow and Toronto, the model seems
to be paying a lot of attention to the visible portion of the car’s
interior at the edges of the photos. In retrospect, this is likely be-
cause, even though we had split our dataset by sequence IDs, it is
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likely that the same car’s dashcam could have contributed different
sequences for a city, contributing to the model overfitting on that
property. Is it also possible that the model is picking up on the
varying popularity of different makes and models of cars across
these cities, with some cars being more popular in specific cities.

Overall, qualitatively, we are able to find sufficient evidence
that our model is converging on intuitive features for the task at
hand. For the future, we can learn that overfitting can be further
avoided by cropping the bottom 20% of images, so that car interi-
ors are not visible in any images.

Failure cases. Despite the above, the model struggles with
night-time imagery, especially in generic highways lacking
city-specific cues. These images frequently had the highest rates
of error. We can intuitively understand this as these images give
the model little to work off of: texture information is not easily
visible in compressed nighttime imagery, and when the scene is
of a random, generic highway, the model does not have much to
go off of in terms of architectural cues. The model should still be
able to leverage other information such as road signage though, so
increasing the size of the dataset along this specific category may
be helpful.

5.5. Overfitting Discussion
The smooth validation curves and monotonic increase of κ

(Figure 3d) indicate that the model learns to assign higher con-
fidence as the geodesic error falls, without memorizing its training
data. Dropout was used in the MLP layers, along with image aug-
mentation for the input images, to help with regularisation.

5.6. Summary
The proposed CLIP + vMF head achieves a median error of

103km on the MSLS 23-city split. Qualitative inspection corrob-
orates our hypothesis that the network learns semantically mean-
ingful cues (road markings, skylines), while failure cases high-
light avenues for improving texture-less scenes, specifically in the
nighttime.

6. Conclusion & Future Work
We tackled the single–image geolocation problem by casting it

as metric regression on the unit sphere and training a lightweight
von Mises–Fisher (vMF) head on top of a CLIP ViT–B/16 back-
bone. A two–stage schedule linear probe followed by a short, par-
tial fine–tune of the last six transformer blocks proved to be the
sweet spot between bias and variance. This configuration achieved
our best numbers: 489 km mean error, 101 km median error,
and a 49.6% hit-rate within 100 km. We found that increasing
the backbone’s trainable depth beyond six blocks or unfreezing it
from the very first epoch led to rapid overfitting without apprecia-
ble gains on the validation set.

Qualitatively, Grad-CAM visualisations revealed that the
model attends to stable geo–informative cues, such as road layout,
vegetation type, sky colour gradients, and region-specific features
such as regional buses and the shapes of electric pylons, as op-
posed to brittle artefacts like JPEG blocks. Error analysis suggests
that night-time scenes frequently have the greatest amount of er-

ror, underscoring the model’s reliance on high–frequency texture
cues that are absent under poor illumination.

Future Work. Given more time and compute we would try
extending the training set beyond 23 cities to a truly global cov-
erage, possibly via labelled Flickr images. We would also like
to try adding a retrieval flow following the neural network pass,
similar to PlaNet’s approach, to help further cover the gap. The
neural network component could be especially helpful for regions
with sparser coverage, where reasoning will be important, while
retrieval could help improve accuracy in areas with high coverage,
such as large cities. It would also be valuable to try different model
backbones, and consider experimenting with RL approaches, as
well as newer techniques like Mixture-of-Experts routing to cap-
ture region-specific features.

We feel that this area is rife for future exploration, and the prob-
lem continues to be interesting with scalable solutions waiting to
be found.
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